*
*


CAPTCHA Image   Reload Image
X

Прогнозирование логарифмической прибыли

курсовые работы, Статистика

Объем работы: 17 стр.

Год сдачи: 2008

Стоимость: 1050 руб.

Просмотров: 444

 

Не подходит работа?
Узнай цену на написание.

Оглавление
Введение
Литература
Заказать работу
Введение ………………………………………….….……………………… 3

1. Построение прогноза модели…………………………………………….. 4

1.1. Спецификация модели……………………..…..……………………….. 4

1.2. Построение оценок параметров модели……..………………………… 6

1.3. Условие устойчивости процесса…..…………………………………… 7

2. Проверка качества прогноза……………………………………………… 8

3. Практическая реализация…………………………………………………. 9

3.1. Компьютерное моделирование…………………………………………. 9

3.2. Анализ результатов моделирования………………………………….. 10

Заключение……………………………………….…………………………. 11

Приложение 1. График реализации модели…….………………………… 12

Приложение 2. Текст программы………………..………………………… 13

Приложение 3. Результаты моделирования……..………………………... 15

Список используемой литературы……….………..………………………. 17



Введение



Традиционные модели временных рядов, такие как модель ARMA, не могут адекватно учесть все характеристики, которыми обладают финансовые временные ряды, и требуют расширения. Одна из характерных черт финансовых рынков – это то, что присущая рынку неопределенность изменяется во времени. Как следствие, наблюдается «кластеризация волатильности». Под этим имеется в виду то, что могут чередоваться периоды, когда финансовые показатель ведет себя непостоянно, и относительно спокойные периоды. Термин «волатильность» (volatility – англ. изменчивость, непостоянство) используется, как правило, для неформального обозначения степени вариабельности, разброса переменной. Формальной мерой волатильности служит дисперсия (или среднеквадратическое отклонение). Эффект кластеризации волатильности отмечен для таких рядов как изменение цен акций, валютных курсов, доходов спекулятивных активов.

Например, при рассмотрении курса RUR/USD за несколько последних лет можно выделить периоды, когда колебания курса были незначительны, и периоды, когда, среагировав на определённые события, курс в течение нескольких дней или недель совершал значительные колебания (т.е. выбросы были не разовыми и случайными, а представляли собой затухающую серию, спровоцированную...

Заключение



Настоящая курсовая работа посвящена рассмотрению комбинированной модели AR(1)/ARCH(1), оценке одного из ее параметров и построению на основе этих оценок адаптивных оптимальных одношаговых прогнозов.

Численное моделирование алгоритма показало, что прогнозы, строящиеся с помощью рассматриваемой нами модели «качественные» в смысле критерия (2).

Приложение 1. График реализации модели

Покажем график компьютерной реализации последовательности X=(Xn) , подчиняющейся модели AR(1)/ARCH(1) с параметрами , , , , .











Приложение 2. Текст программы



















































Приложение 3. Результаты моделирования



Таблица 1. Значение функции качества прогноза, заданной формулой:



для модели AR(1)/ARCH(1) со следующими параметрами: , , значения параметра λ задавались с шагом 0.2 на отрезке , оценка параметра вычислена по формуле (1.5). Начальное значение . Величины генерировались с помощью датчика случайных чисел нормального распределения с параметрами (0,1).





N=100 N=400 N=700 N=1000



8.766 101.137 767.09 35.613



4.548 4.867 4.75 4.99



2.844 2.534 2.552 1.901



1.845 2.596 1.811 2.55



2.049 1.849 1.554 1.575



2.555 1.684 1.614 2.494



4.339 4.576 2.817 1.947



2.898 2.634 3.267 2.788



6.326 16.031 4.436 3.55



26.002 30.363 60.463 89.531





Таблица 2. Значение функции качества прогноза для модели AR(1)/ARCH(1) со следующими параметрами: , , значения параметра λ задавались с шагом 0.2 на отрезке , оценка параметра вычислена по формуле (1.5). Начальное значение . Величины генерировались с помощью датчика случайных чисел равномерного распределения, заданного на отрезке (-1,1).



N=100 N=400 N=700 N=1000



4.466 14.571 6.26 6.046



1.598 1.106 1.04 0.866



0.613 0.63 0.764 0.69



0.601 0.541 0.485 0.569



0.525 0.601 0.705 0.58



0.665 0.505 0.477 0.559



0.534 0.542 0.565 0.638



0.776 0.64 0.69 0.781



1.058 0.94 1.24...

1.Ширяев А. Н. Основы стохастической финансовой математики. Том 1. Факты и модели./ А. Н. Ширяев – М.: Фазис, 1998. – 512с.

2.Андерсон Т. Статистический анализ временных рядов. / Андерсон Т.; пер. с англ. Журбенко И. Г.; под ред. Беляева Ю.К. – М.:Мир, 1976. – 755[4]с.: ил.

3.Shephard N. Statistical aspects of ARCH and stochastic volatility./ D. R. Cox, D. V. Hinkley, O.E. Ba
dorff-Nielsen, Publisher: Chapman & Hall, 1996, pp.765-773.

4.Васильев В.А. Прогнозирование, моделирование, идентификация динамических систем с дискретным временем./ Васильев В. А. – Томск: ТГУ, 2000. – 62с.

После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.

Работу высылаем в течении суток после поступления денег на счет
ФИО*


E-mail для получения работы *


Телефон


ICQ


Дополнительная информация, вопросы, комментарии:



CAPTCHA Image
Сусловиямиприбретения работы согласен.

 
Добавить страницу в закладки
Отправить ссылку другу