*
*


CAPTCHA Image   Reload Image
X

Прикладная математика

курсовые работы, математические методы экономики

Объем работы: 21 стр.

Год сдачи: 2008

Стоимость: 1200 руб.

Просмотров: 496

 

Не подходит работа?
Узнай цену на написание.

Оглавление
Введение
Литература
Заказать работу
1. ЛИНЕЙНАЯ ПРОИЗВОДСТВЕННАЯ ЗАДАЧА 2

2. ДВОЙСТВЕННАЯ ЗАДАЧА 5

3. ТРАСПОРТНАЯ ЗАДАЧА 7





1. ЛИНЕЙНАЯ ПРОИЗВОДСТВЕННАЯ ЗАДАЧА

На предприятии выпускается четыре вида продукции, при этом затраты ресурсов для изготовления каждого вида определяются матрицей :



Количество ресурсов ограничено и выражено матрицей :



Прибыль, получаемая при выпуске каждого вида продукции, содержит-ся в матрице :



Необходимо определить оптимальный выпуск продукции каждого ви-да, при котором прибыль будет максимальной.



Составим математическую модель задачи.

Пусть количества каждого вида продукции равны: соответ-ственно, тогда функция цели запишется в виде:



Система ограничений по ресурсам:





Приведем систему ограничений к каноническому виду:



Решим задачу симплекс-методом.

Базис БП x1 x2 x3 x4 x5 x6 x7

x5 192 4 3 0 6 1 0 0

x6 24 0 1 5 0 0 1 0

x7 90 1 2 4 3 0 0 1

ИС 0 -16 -18 -14 -12 0 0 0







Базис БП x1 x2 x3 x4 x5 x6 x7

x5 120 4 0 -15 6 1 -3 0

x2 24 0 1 5 0 0 1 0

x7 42 1 0 -6 3 0 -2 1

ИС 432 -16 0 76 -12 0 18 0







Базис БП x1 x2 x3 x4 x5 x6 x7

x1 30 1 0 -15/4 3/2 1/4 -3/4 0

x2 24 0 1 5 0 0 1 0

x7 12 0 0 -9/4 3/2 -1/4 -5/4 1

ИС 912 0 0 16 12 4 6 0



Т.к. в последней строке все элементы , то найдено оптимальное ре-шение.



Таким образом, максимальная прибыль достигается при выпуске перво-го и второго видов продукции в количестве 30 и 24 ед. соответственно и рав-на 912 ден. ед.



Составим математическую модель без учета третьего и четвертого вида продукции.



Система ограничений по ресурсам:





Решим задачу графически, для этого построим область допустимых решений, она будет ограничена прямыми:



Поиск максимума целевой функции будем вести по направлению век-тора:











2. ДВОЙСТВЕННАЯ ЗАДАЧА

Составим двойственную задачу.





Решение двойственной задачи возьмем из последней строки последней таблицы решения исходной задачи:





Добавление одной единицы первого ресурса принесет дополнительно 4 единицы прибыли....

4. ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ. РАСПРЕДЕ-ЛЕНИЕ КАПИТАЛЬНЫХ ВЛОЖЕНИЙ



0 100 200 300 400 500 600 700

f1(x1) 0 16 26 39 42 46 50 54

f2(x2) 0 9 15 23 31 39 45 49

f3(x3) 0 18 26 34 39 42 44 46

f4(x4) 0 15 25 32 38 42 46 48



Заполняем следующую таблицу. Значения f2(x2) складываем со значе-ниями F1(m-x2) = f2(m-x2) и на каждой северо-восточной диагонали находим наибольшее число, которое отмечаем и указываем соответствующее значение z2.

m-x2 0 100 200 300 400 500 600 700

x2 f2(x2)/ F1(m-x2) 0 16 26 39 42 46 50 54

0 0 0 16 26 39 42 46 50 54

100 9 9 25 35 48 51 55 59

200 15 15 31 41 54 57 61

300 23 23 39 49 62 65

400 31 31 47 57 70

500 39 39 55 65

600 45 45 61

700 49 49



Красным цветом обозначен максимальный суммарный эффект от выде-ления соответствующего размера инвестиций 2-м предприятиям.



m 0 100 200 300 400 500 600 700

F2(m) 0 16 26 39 48 54 62 70

z2(m) 0 0 0 0 100 200 300 400





Продолжая процесс, табулируем функции F3(m) и z3(m)



m-x3 0 100 200 300 400 500 600 700

x3 f3(x3)/ F2(m-x3) 0 16 26 39 48 54 62 70

0 0 0 16 26 39 48 54 62 70

100 18 18 34 44 57 66 72 80

200 26 26 42 52 65 74 80

300 34 34 50 60 73 82

400 39 39 55 65 78

500 42 42 58 68

600 44 44 60

700 46 46



m 0 100 200 300 400 500 600 700

F3(m) 0 18 34 44 57 66 74 82

z3(m) 0 100 100 100 100 100 200 300



Продолжая процесс, табулируем функции F4(m) и z4(m)



m-x3 0 100 200 300 400 500 600 700

x3 f3(x3)/ F2(m-x3) 0 18 34 44 57 66 74 82

0 0 0 18 34 44 57 66 74 82

100 15 15 33 49 59 72 81 89

200 25 25 43 59 69 82 91

300 32 32 50 66 76 89

400 38 38 56 72 82

500 42 42 60 76

600 46 46 64

700 48 48



m 0 100 200 300 400 500 600 700

F4(m) 0 18 34 49 59 72 82 91

z4(m) 0 0 0 100 100 100 200 200



m 0 100 200 300 400 500 600 700

F1(m)=f1(x1) 0 16 26 39 48 54 62 70

z1=x1 0 100 200 300 400 500 600 700



F2(m) 0 16 26 39 48 54 62 70

z2(m) 0 0 0 0 100 200 300 400...

нет списка лит-ры

После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.

Работу высылаем в течении суток после поступления денег на счет
ФИО*


E-mail для получения работы *


Телефон


ICQ


Дополнительная информация, вопросы, комментарии:



CAPTCHA Image
Сусловиямиприбретения работы согласен.

 
Добавить страницу в закладки
Отправить ссылку другу