*
*


CAPTCHA Image   Reload Image
X

Экстремум функции двух переменных. Наибольшее и наименьшее значение функции двух переменных

рефераты, математика

Объем работы: 14 стр.

Год сдачи: 2009

Стоимость: 105 руб.

Просмотров: 805

 

Не подходит работа?
Узнай цену на написание.

Оглавление
Введение
Литература
Заказать работу
Реферат с примерами решений задач

При рассмотрении многих вопросов из различных областей знания приходится изучать такие зависимости между переменными величинами, когда числовые значения одной из них полностью определяются значениями нескольких других.

Например, изучая физическое состояние какого-либо тела, приходится наблюдать изменение его свойств от точки к точке. Каждая точка тела задается тремя координатами: x, y, z. Поэтому, изучая, скажем, распределение плотности, заключаем, что плотность тела зависит от трех переменных: x, y, z. Если физическое состояние тела к тому же еще и меняется с течением времени t, то та же плотность будет зависеть уже от значений четырех переменных: x, y, z, t.

Другой пример: изучаются издержки производства на изготовление единицы некоторого вида продукции. Пусть: x - затраты по материалам, y - расходы на выплату заработной платы работникам, z - амортизационные отчисления. Очевидно, что издержки производства зависят от значений названных параметров x, y, z.

Определение. Если каждой совокупности значений "n"переменных



из некоторого множества D этих совокупностей соответствует своё единственное значение переменной z, то говорят, что на множестве D задана функция "n"переменных





Множество D, указанное в определении, называется областью определения или областью существования этой функции.

Если рассматривается функция двух переменных, то совокупности чисел



обозначаются, как правило, (x, y) и интерпретируются как точки координатной плоскости Oxy, а область определения функции z = f ( x, y ) двух переменных изобразится в виде некоторого множества точек на плоскости Oxy.



Экстремум функции двух переменных

Определение 1. Пусть задана функция двух переменных z=z(x,y), (x,y) D. Точка M0(x0;y0) - внутренняя точка области D.

Если в D присутствует такая окрестность UM0 точки M0, что для всех точек



то точка M0 называется точкой локального максимума. А само значение z(M0) - локальным максимумом.

А если же для всех точек



то точка M0 называется...

1. Власов В.Г. Конспект лекций по высшей математике. –М.: Айрис, 1996.

2. Кудрявцев Л.Д. Краткий курс математического анализа. –М., Наука, 1989.

3. Данко Л.Е. и др. Высшая математика в упражнениях и задачах. Учебное пособие для втузов в 1-2 т. –М., Высшая школа, 2000.

4. www.atomas.ru

После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.

Работу высылаем в течении суток после поступления денег на счет
ФИО*


E-mail для получения работы *


Телефон


ICQ


Дополнительная информация, вопросы, комментарии:



CAPTCHA Image
Сусловиямиприбретения работы согласен.

 
Добавить страницу в закладки
Отправить ссылку другу