*
*


CAPTCHA Image   Reload Image
X

решение задач по теории вер. 25 шт из учебника В.Е.Гмурман

контрольные работы, математика

Объем работы: 13 стр.

Год сдачи: 2008

Стоимость: 1400 руб.

Просмотров: 1245

 

Не подходит работа?
Узнай цену на написание.

Оглавление
Введение
Литература
Заказать работу
Задача 11 (69).

Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

Задача 12 (81).

Устройство содержит два независимо работающих элемента. Вероятности отказа элементов соответственно равны 0,05 и 0,08. Найти вероятность отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент.

Задача 13 (93).

В ящике содержится 12 деталей, изготовленных на заводе №1, 20 деталей – на заводе №2 и 18 деталей на заводе №3. Вероятность того, что деталь, изготовленная на заводе №1, отличного качества, равна 0,9; для деталей, изготовленных на заводах №2 и №3, эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества

Задача 19 (200).

Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание дискретной случайной величины Х – числа партий, в каждой из которых окажется ровно 4 стандартных изделия, - если проверке подлежит 50 партий.

Решение:

Случайная величина Х может принимать значения от 0 до 50 (т.е. количество партий, в которых окажется ровно 4 стандартных изделия может принимать значения от 0 до 50).

Найдем вероятность того, что в партии из 5 изделий 4 стандартны.

Согласно формулы Бернулли (формула) , причем в нашем случае: (разъяснение)

. Тогда: (решение)



Распределение случайной величины Х является биномиальным, т.к. вероятность появления ровно 4 стандартных изделий в каждой партии постоянна и равна и соответственно вероятность каждого значения величины Х будет высчитываться по формуле Бернулли.

В свою очередь математическое ожидание биномиально распределенной случайной величины находится по формуле: .

Таким образом, искомое математическое ожидание равно:

Задача 14 (98).

В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Что вероятнее: стрелок стрелял из винтовки с оптическим прицелом или без него?



Задача 15 (115).

В семье пять детей. Найти вероятность того, что среди этих детей:

а) два мальчика; б) не более двух мальчиков; в) более двух мальчиков;

г) не менее двух и не более трех мальчиков.

Вероятность рождения мальчика принять равной 0,51.

После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.

Работу высылаем в течении суток после поступления денег на счет
ФИО*


E-mail для получения работы *


Телефон


ICQ


Дополнительная информация, вопросы, комментарии:



CAPTCHA Image
Сусловиямиприбретения работы согласен.

 
Добавить страницу в закладки
Отправить ссылку другу