*
*


CAPTCHA Image   Reload Image
X

К.Р. по математике Вариант 9

контрольные работы, математика

Объем работы: 14 стр.

Год сдачи: 2010

Стоимость: 800 руб.

Просмотров: 476

 

Не подходит работа?
Узнай цену на написание.

Оглавление
Введение
Литература
Заказать работу
9. Решить систему уравнений тремя способами: по формулам Крамера, методом Гаусса-Жордана, средствами матричного исчисления. Сделать проверку правильности вычисления обратной матрицы.
х1+х2-2х3=1
5х1+3х2+х3=1
-х1-2х2+х3=-3
19. Даны векторы a,b,c и d. Показать, что векторы a,b,c образуют базис и найти координаты вектора d в этом базисе.
a=(1,5,-1),b=(1,3,-2)?c=(-2,1,1),d=(1,1,-3)29. Даны координаты вершин пирамиды A1A2A3A4. Найти: а) угол между ребрами A1A2 и A1A3; б) площадь грани A1A2A3; в) уравнение плоскости A1A2A3; г) уравнение высоты, проходящей через A4; д) объем пирамиды.
A1(1,-1,1), A2(2,4,0),A3(2,2,-1),A4(-1,0,2)39. Привести уравнение кривой второго порядка к каноническому виду. Для эллипса найти координаты вершин и фокусов, для гиперболы – координаты вершин, фокусов и уравнения асимптот, для параболы – координаты фокуса и уравнение директрисы, для окружности - координаты центра и радиус. Сделать чертеж.
(4x+5y)^2=40(10+xy)49.Вычислить пределы, не пользуясь правилом Лопиталя:
а) б) в) г)
59. Найти точку разрыва данной функции. Сделать чертеж.
-x-1,x
19. Даны векторы и . Показать, что векторы образуют базис и найти координаты вектора в этом базисе.
, , , .Решение:
векторы образуют базис в 3-хмерном векторном пространстве если они линейно-независимые, т.е. тогда и только тогда, если . Рассмотрим однородную систему линейных уравнений:
которая имеет единственное решение - нулевое, тогда и только тогда если ее определитель отличен от нуля:
, следовательно, и векторы образуют базис.
Найдем теперь координаты вектора в базисе , т.е. , следовательно, имеем систему для нахождения искомых координат:
решение которой получено в задаче 9: , т.е. .
29. Даны координаты вершин пирамиды . Найти: а) угол между ребрами и ; б) площадь грани ; в) уравнение плоскости ; г) уравнение высоты, проходящей через ; д) объем пирамиды.
.Решение:
а) угол между ребрами и как угол между векторами и :
, , тогда
, следовательно, искомый угол:
;б) площадь грани найдем как площадь треугольника образованного векторами и :
, , тогда
;в) запишем уравнение плоскости как плоскости проходящей через три точки :
, , - искомое уравнение;
г) уравнение высоты, проходящей через найдем, как уравнение прямой проходящей через точку перпендикулярно плоскости :
;д) объем пирамиды найдем с помощью смешанного произведения векторов:
, , тогда
.39. Привести уравнение кривой второго порядка к каноническому виду. Для эллипса найти координаты вершин и фокусов, для гиперболы – координаты вершин, фокусов и уравнения асимптот, для параболы – координаты фокуса и уравнение директрисы, для окружности - координаты центра и радиус. Сделать чертеж.
.Решение:
- эллипс, координаты вершин которого (-5,0), (5,0), (0,-4), (0,4), а координаты фокусов и , т.к. .
Сделаем чертеж:
нет

После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.

Работу высылаем в течении суток после поступления денег на счет
ФИО*


E-mail для получения работы *


Телефон


ICQ


Дополнительная информация, вопросы, комментарии:



CAPTCHA Image
Сусловиямиприбретения работы согласен.

 
Добавить страницу в закладки
Отправить ссылку другу