Отбор факторов для включения в многофакторную регрессионную модель
контрольные работы, Экономика Объем работы: 24 стр. Год сдачи: 2010 Стоимость: 150 руб. Просмотров: 953 | | |
Оглавление
Введение
Заключение
Заказать работу
Содержание:
1. Отбор факторов для включения в многофакторную регрессионную модель.
2. Применение скользящих средних в экономическом прогнозировании.
3. Список литературы.
Отбор факторов для включения в многофакторную регрессионную модель.
Термин \"регрессия\" (лат. - \"regression\" - отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтпном и связан только со спецификой одного из первых конкретных примеров, в котором это понятие было использовано.
Функция f(x1, x2,…,хk ), описывающая зависимость условного среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии.
Для точного описания уравнения регрессии необходимо знать услов-ный закон распределения результативного показателя у. В статистической практике такую информацию получить обычно не удается, поэтому ограничиваются поиском подходящих аппроксимаций для функции f( x1, x2,…,хk ), основанных на исходных статистических данных.
В рамках отдельных модельных допущений о типе распределения век-тора показателей (у, x1, x2,…,хk ) может быть получен общий вид уравнения регрессии f(x)=M(y/x) x=( x1, x2,…,хk ) . Например, в предложении, что исследуемая совокупность показателей подчиняется (k + 1) - мерному нормальному закону распределения с вектором математических ожиданий
Одним из наиболее старых и широко известных методов сглаживания временных рядов является метод скользящих средних. Применяя этот метод, можно элиминировать случайные колебания и получить значения, соответствующие влиянию главных факторов. Сглаживание с помощью скользящих средних основано на том, что в средних величинах взаимно погашаются случайные отклонения. Это происходит вследствие замены первоначальных уровней временного ряда средней арифметической величиной внутри выбранного интервала времени. Полученное значение относится к середине выбранного периода. Затем период сдвигается на одно наблюдение, и расчет средней повторяется, причем периоды определения средней берутся все время одинаковыми. Таким образом, в каждом случае средняя центрирована, т.е. отнесена к серединной точке интервала сглаживания и представляет собой уровень для этой точки.
После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.