*
*


CAPTCHA Image   Reload Image
X

Моделирование полета тела, летящего под углом к горизонту

контрольные работы, Программирование

Объем работы: 20 стр.

Год сдачи: 2010

Стоимость: 300 руб.

Просмотров: 1223

 

Не подходит работа?
Узнай цену на написание.

Оглавление
Содержание
Заключение
Заказать работу
Введение 4
Глава І. Теоретическая часть 5
Глава II. Практическая часть 6
Заключение 16
Список литературы 18
Приложение 19
Целью проектирования является построение формальной модели решения задачи «Моделирование полета тела, летящего под углом к горизонту» и программно реализовать данную модели на примере тренировок теннисистов использующих автоматы по бросанию мячика в определенное место площадки. Необходимо задать автомату необходимую скорость и угол бросания мячика для попадания в площадку определенной длины, находящуюся на известном расстоянии.
Сначала построим качественную описательную модель процесса движения тела с использованием физических объектов, понятий и законов, т.е. в данном случае идеализированную модель движения объекта. Из условия задачи можно сформулировать следующие основные предположения:
- мячик мал по сравнению с Землей, поэтому его можно считать материальной точкой;
- изменение высоты мячика мало, поэтому ускорение свободного падения можно считать постоянной величиной g=9,8 м/с2 и движение по оси Y можно считать равноускоренным;
- скорость бросания тела мала, поэтому сопротивлением воздуха можно пренебречь и движение по оси X можно считать равномерным.
И в дальнейшем реализуем данную задачу с помощью Delphi и Excel.
Анализ результатов моделирования задачи позволяет сделать вывод о крайне эффективном программы,.
Дальность полета АВ тела, брошенного под углом к горизонту, зависит от величины начальной скорости и угла бросания. При неизменной скорости бросания V0 с увеличением угла, между направлением скорости бросания и горизонтальной поверхностью от 0 до 45°, дальность полета возрастает, а при дальнейшем росте угла бросания - уменьшается. В этом легко убедиться, направляя струю воды под разными углами к горизонту или следя за движением шарика, выпущенного из пружинного "пистолета" (такие опыты легко проделать самому).
Траектория такого движения симметрична относительно наивысшей точки полета и при небольших начальных скоростях, как уже говорилось раньше, представляет собой параболу.
Максимальная дальность полета при данной скорости вылета достигается при угле бросания 45°. Когда угол бросания составляет 30 или 60°, то дальность полета тел для обоих углов оказывается одинаковой. Для углов бросания 75 и 15° дальность полета будет опять одна и та же, но меньше, чем при углах бросания 30 и 60°. Значит, наиболее "выгодным" для дальнего броска углом является угол в 45°, при любых других значениях угла бросания дальность полета будет меньше.
Если бросить тело с некоторой начальной скоростью Vо под углом 45° к горизонту, то его дальность полета будет в два раза больше максимальной высоты подъема тела, брошенного вертикально вверх с такой же начальной скоростью.
При отсутствии сопротивления воздуха наибольшей дальности полета соответствовал бы угол наклона ствола винтовки равный 45°, но сопротивление воздуха значительно изменяет траекторию движения и максимальной дальности полета соответствует другой угол наклона ствола винтовки - больше 45°. Величина этого угла зависит также от скорости пули при выстреле. Если скорость пули при выстреле 870 м/с, то реальная дальность полета составит примерно 3,5 км, а не 77 км, как показывают "идеальные" расчеты.
Эти соотношения...

После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.

Эту работу можно получить в офисе или после поступления денег на счет в течении 30 минут (проверка денег с 12.00 до 18.00 по мск).
ФИО*


E-mail для получения работы *


Телефон


ICQ


Дополнительная информация, вопросы, комментарии:



CAPTCHA Image
Сусловиямиприбретения работы согласен.

 
Добавить страницу в закладки
Отправить ссылку другу