ЗАДАНИЕ 1 8. L = 2x1 + 3x2 8x1- 5x2 11 -x1 + 3x2 1 2x1 + 7x2 7 18. L = x1 + x2 8x1 - 5x2 11 -x1 + 3x2 1 2x1 + 7x2 7
контрольные работы, Математика Объем работы: 12 стр. Год сдачи: 2013 Стоимость: 130 руб. Просмотров: 1260 | | |
Оглавление
Введение
Содержание
Заключение
Заказать работу
ЗАДАНИЕ 1
8. L = 2x1 + 3x2
8x1- 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
18. L = x1 + x2
8x1 - 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
x2 1
Используя графический метод решения линейных программ, найти максимальное и минимальное значения линейной функции на одном и том же множестве планов.
ЗАДАНИЕ 2
Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать выводы по полученным результатам.
8. Перед проектировщиками автомобиля поставлена задача сконструировать самый дешевый кузов, используя листовой металл, стекло и пластмассу. Основные характеристики материалов представлены в таблице.
Общая поверхность кузова (вместе с дверями и окнами) должна составлять 14 м2, из них не менее 4 м2 и не более 5 м2 следует отнести под стекло. Вес кузова не должен превышать 150 кг.
Сколько металла, стекла и пластмассы должен использовать наилучший проект?
Характеристики Материалы
металл стекло пластмасса
Стоимость 1 м2
Вес 1 м2 25
10 20
15 40
3
ЗАДАНИЕ 3
Решить симплексным методом (с использованием симплексных таблиц) одну из пары двойственных задач задания № 2. Обосновать выбор модели для применения симплексного метода. Записать ответы для обеих задач. Провести анализ и сделать выводы по полученным результатам.
Решение:
ЗАДАНИЕ 1
8. L = 2x1 + 3x2
8x1- 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
18. L = x1 + x2
8x1 - 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
x2 1
Используя графический метод решения линейных программ, найти максимальное и минимальное значения линейной функции на одном и том же множестве планов.
ЗАДАНИЕ 2
Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать выводы по полученным результатам.
8. Перед проектировщиками автомобиля поставлена задача сконструировать самый дешевый кузов, используя листовой металл, стекло и пластмассу. Основные характеристики материалов представлены в таблице.
Общая поверхность кузова (вместе с дверями и окнами) должна составлять 14 м2, из них не менее 4 м2 и не более 5 м2 следует отнести под стекло. Вес кузова не должен превышать 150 кг.
Сколько металла, стекла и пластмассы должен использовать наилучший проект?
Характеристики Материалы
металл стекло пластмасса
Стоимость 1 м2
Вес 1 м2 25
10 20
15 40
3
ЗАДАНИЕ 3
Решить симплексным методом (с использованием симплексных таблиц) одну из пары двойственных задач задания № 2. Обосновать выбор модели для применения симплексного метода. Записать ответы для обеих задач. Провести анализ и сделать выводы по полученным результатам.
Решение:
ЗАДАНИЕ 1
8. L = 2x1 + 3x2
8x1- 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
18. L = x1 + x2
8x1 - 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
x2 1
Используя графический метод решения линейных программ, найти максимальное и минимальное значения линейной функции на одном и том же множестве планов.
ЗАДАНИЕ 2
Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать выводы по полученным результатам.
8. Перед проектировщиками автомобиля поставлена задача сконструировать самый дешевый кузов, используя листовой металл, стекло и пластмассу. Основные характеристики материалов представлены в таблице.
Общая поверхность кузова (вместе с дверями и окнами) должна составлять 14 м2, из них не менее 4 м2 и не более 5 м2 следует отнести под стекло. Вес кузова не должен превышать 150 кг.
Сколько металла, стекла и пластмассы должен использовать наилучший проект?
Характеристики Материалы
металл стекло пластмасса
Стоимость 1 м2
Вес 1 м2 25
10 20
15 40
3
ЗАДАНИЕ 3
Решить симплексным методом (с использованием симплексных таблиц) одну из пары двойственных задач задания № 2. Обосновать выбор модели для применения симплексного метода. Записать ответы для обеих задач. Провести анализ и сделать выводы по полученным результатам.
Решение:
ЗАДАНИЕ 1
8. L = 2x1 + 3x2
8x1- 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
18. L = x1 + x2
8x1 - 5x2 11
-x1 + 3x2 1
2x1 + 7x2 7
x2 1
Используя графический метод решения линейных программ, найти максимальное и минимальное значения линейной функции на одном и том же множестве планов.
ЗАДАНИЕ 2
Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать выводы по полученным результатам.
8. Перед проектировщиками автомобиля поставлена задача сконструировать самый дешевый кузов, используя листовой металл, стекло и пластмассу. Основные характеристики материалов представлены в таблице.
Общая поверхность кузова (вместе с дверями и окнами) должна составлять 14 м2, из них не менее 4 м2 и не более 5 м2 следует отнести под стекло. Вес кузова не должен превышать 150 кг.
Сколько металла, стекла и пластмассы должен использовать наилучший проект?
Характеристики Материалы
металл стекло пластмасса
Стоимость 1 м2
Вес 1 м2 25
10 20
15 40
3
ЗАДАНИЕ 3
Решить симплексным методом (с использованием симплексных таблиц) одну из пары двойственных задач задания № 2. Обосновать выбор модели для применения симплексного метода. Записать ответы для обеих задач. Провести анализ и сделать выводы по полученным результатам.
Решение:
После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.