Геометрия Евклида, значение начала Евклида для общечеловеческой культуры
рефераты, Математика Объем работы: 17 стр. Год сдачи: 2015 Стоимость: 300 руб. Просмотров: 528 | | |
Оглавление
Введение
Заключение
Заказать работу
Введение 3
1.Геометрия Евклида 5
2.Значение начала Евклида для общечеловеческой культуры 11
Заключение 17
Список использованной литературы 18
Геометрия - довольно древняя наука, родиной которой принято считать Восток. В своем становлении она прошла несколько этапов, которые включает в себя история развития математики, так как первые геометрические понятия были связаны с землемерием. И только гораздо позже произошло выделение геометрии в самостоятельную науку.
Начальным периодом можно назвать зарождение науки в Вавилоне и Египте. Это был примерно пятый век до нашей эры, но тогда всевозможные вычисления были связаны не столько с изучением понятий, сколько с применением их для практических нужд. Строились жертвенники, измерялись земельные площади, что привело к заложению научных основ. Именно там, на Востоке, и берет свое начало история возникновения геометрии.
Знаменательным для развития этой науки становится седьмой век до нашей эры, когда землемерная восточная мудрость находит свое распространение в Греции. История развития геометрии делает довольно резкий скачок, так как греческие философы начинают заниматься систематическим изложением основ, доказывая любое предложение. Этот период известен теоремой Фалеса о сумме углов треугольника, открытием иррациональных чисел Пифагором, знаменитыми "Началами" Евклида. Именно последний в своем 13-томнике систематизировал геометрию как науку, где основными положениями выступали аксиомы.
Многие греческие, индийские, арабские ученые продолжали развивать "Начала" и обогащать своими открытиями, но новый качественный рывок развитие геометрии испытывает в 17-м веке. Именно это время считается началом третьего периода, который прочно связан с именами Декарта и Ферма. Их называют создателями аналитической геометрии. Суть этой прикладной науки заключается в том, что свойства фигур начинают изучаться по их алгебраическим уравнениям, где за основу берется метод координат. Но качественное развитие геометрии не заканчивается на этом. Появляются еще две ее разновидности: дифференциальная, связанная с именами Монжа и Эйлера, и проективная,...
Таким образом, в становлении науки четко прослеживаются ее основные вехи. Но надо сказать, что история развития геометрии не является застывшей и мертвой. Геометрическая наука постоянно в действии: расширяется круг фигур, их изучаемые свойства, меняются сами понятия об объектах.
После офорления заказа Вам будут доступны содержание, введение, список литературы*
*- если автор дал согласие и выложил это описание.